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Chapter 9. Root Finding and
Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one
traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be
satisfied simultaneously. You likely once learned the implicit function theorem
which (in this context) gives us the hope of satisfying N equations in N unknowns
simultaneously. Note that we have only hope, not certainty. A nonlinear set of
equations may have no (real) solutions at all. Contrariwise, it may have more than
one solution. The implicit function theorem tells us that “generically” the solutions
will be distinct, pointlike, and separated from each other. If, however, life is so
unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get
a continuous family of solutions. In vector notation, we want to find one or more
N -dimensional solution vectors x such that

f(x) = 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a root
between bracketing values, and then hunt it down like a rabbit. In multidimensions,
you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms
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will always converge, provided that the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on having
a good first guess for the solution, especially for multidimensional problems. This
crucial beginning usually depends on analysis rather than numerics. Carefully crafted
initial estimates reward you not only with reduced computational effort, but also
with understanding and increased self-esteem. Hamming’s motto, “the purpose of
computing is insight, not numbers,” is particularly apt in the area of finding roots.
You should repeat this motto aloud whenever your program converges, with ten-digit
accuracy, to the wrong root of a problem, or whenever it fails to converge because
there is actually no root, or because there is a root but your initial estimate was
not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but we
give it nonetheless) never let your iteration method get outside of the best bracketing
bounds obtained at any stage. We will see below that some pedagogically important
algorithms, such as secant method or Newton-Raphson, can violate this last constraint,
and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maintaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist on
bracketing a root, even if it takes the minimum-searching techniques of Chapter 10
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of §10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is
exactly zero, then you have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

• Brent’s algorithm in §9.3 is the method of choice to find a bracketed root
of a general one-dimensional function, when you cannot easily compute
the function’s derivative. Ridders’ method (§9.2) is concise, and a close
competitor.

• When you can compute the function’s derivative, the routine rtsafe in
§9.4, which combines the Newton-Raphson method with some bookkeep-
ing on bounds, is recommended. Again, you must first bracket your root.

• Roots of polynomials are a special case. Laguerre’s method, in §9.5,
is recommended as a starting point. Beware: Some polynomials are
ill-conditioned!

• Finally, for multidimensional problems, the only elementary method is
Newton-Raphson (§9.6), which works very well if you can supply a
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good first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives.

Avoiding implementations for specific computers, this book must generally
steer clear of interactive or graphics-related routines. We make an exception right
now. The following routine, which produces a crude function plot with interactively
scaled axes, can save you a lot of grief as you enter the world of root finding.

SUBROUTINE scrsho(fx)
INTEGER ISCR,JSCR
REAL fx
EXTERNAL fx
PARAMETER (ISCR=60,JSCR=21) Number of horizontal and vertical positions in display.

For interactive CRT terminal use. Produce a crude graph of the function fx over the
prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.

INTEGER i,j,jz
REAL dx,dyj,x,x1,x2,ybig,ysml,y(ISCR)
CHARACTER*1 scr(ISCR,JSCR),blank,zero,yy,xx,ff
SAVE blank,zero,yy,xx,ff
DATA blank,zero,yy,xx,ff/’ ’,’-’,’l’,’-’,’x’/

1 continue
write (*,*) ’ Enter x1,x2 (= to stop)’Query for another plot, quit if x1=x2.
read (*,*) x1,x2
if(x1.eq.x2) return
do 11 j=1,JSCR Fill vertical sides with character ’l’.

scr(1,j)=yy
scr(ISCR,j)=yy

enddo 11

do 13 i=2,ISCR-1
scr(i,1)=xx Fill top, bottom with character ’-’.
scr(i,JSCR)=xx
do 12 j=2,JSCR-1 Fill interior with blanks.

scr(i,j)=blank
enddo 12

enddo 13

dx=(x2-x1)/(ISCR-1)
x=x1
ybig=0. Limits will include 0.
ysml=ybig
do 14 i=1,ISCR Evaluate the function at equal intervals. Find the

largest and smallest values.y(i)=fx(x)
if(y(i).lt.ysml) ysml=y(i)
if(y(i).gt.ybig) ybig=y(i)
x=x+dx

enddo 14

if(ybig.eq.ysml) ybig=ysml+1. Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj Note which row corresponds to 0.
do 15 i=1,ISCR Place an indicator at function height and 0.

scr(i,jz)=zero
j=1+(y(i)-ysml)*dyj
scr(i,j)=ff

enddo 15

write (*,’(1x,1pe10.3,1x,80a1)’) ybig,(scr(i,JSCR),i=1,ISCR)
do 16 j=JSCR-1,2,-1 Display.

write (*,’(12x,80a1)’) (scr(i,j),i=1,ISCR)
enddo 16

write (*,’(1x,1pe10.3,1x,80a1)’) ysml,(scr(i,1),i=1,ISCR)
write (*,’(12x,1pe10.3,40x,e10.3)’) x1,x2
goto 1
END
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9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a, b) if f(a) and f(b) have
opposite signs. If the function is continuous, then at least one root must lie in
that interval (the intermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x − c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any
number x close to it, for a root, since mere evaluation of |f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual if your function has opposite
signs in the limit x → ±∞.


